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DIFFUSION PROBLEMS IN BONDED NONHOMOGENEOUS

MATERIALS WITH AN INTERFACE CUT

by

Fazil Erdogan and Murat Ozturk

Lehigh University, Bethlehem, PA 18015

ABSTRACT

In this paper the mixed boundary value problem for a nonhomogeneous medium

bonded to a rigid subspace is considered. The main objective is to investigate the

techniques that woiid lead to analytically tractable solutions and to provide examples

comparing the results of various kinds of material nonhomogeneities. The problem

studied is a two dimensional diff'uion problem in which the interface contains a plane

crack. An elastic medium under antiplane shear loading is used to formulate the

problem. However, the results may uc interpreted in terms of any number of steady-

state diffusion phenomena. The method used is essentially an inverse method in the

sense that it provides the material constitutive behavior for which the mixed boundary

value problem can be solved rather than solving the problem for a given material. Two

different methods are described and some numerical examples are given.

1. Intrloduction

Increasing concerns in recent years with mechanical failure initiating at the

interfacial regions in many technologically important multiphase materials require a

better understanding of the interaction between flaws that may exist in these regions

and the applied loads and other environmental factors. The conventional approach to

studying the thermomechanics of such materials is based on the assumption that the

composite medium is piecewise homogeneous and the flaws may be represented by plane

cuts or cracks. On the other hand in most bonded materials the interfacial region

appears to have a structure which is generally different than that of the adjacent

materials. In many cases, such as in pla.sma spray coating, sputtering, ion plating and

in some diffusion bonded materials, the thermomechanical properties of the region are

"graded" in the sense that the interfacial region is a nonhomogeneous continuum of



finite thickness with very steep property gradients [1], [2]. Among other applications of

bonded nonhomogeneous materials one may mention certain geophysical materials with

naturally graded compositions such as shale/sandstone and materials which have highly

temperature dependent properties and are under steep temperature gradients. However,

perhaps the most important reason for studying the diffusion and fracture problems in

bonded nonhomogeneous materials is the technological potential of the so-called

functionally gradient materials (FGM). These are the multiphase materials, interlayers

and coatings synthesized in such a way that the volume fractions of the constituents are

varied continuously in thickness direction to give a predetermined composition profile

[3i - [9]. The material thus obtained is known to have some wide ranging highly

desirable properties. From the viewpoint of failure mechanics some of these properties

are reduced thermal stresses, residual stresses and stress concentration factors [3],

improved bonding strength [6], and improved toughness and corrosion and fatigue crack

growth resistance. Most of the current research on FG.Ms appears to be in the area of

ceramic coatings motivated by a variety of thermal shielding problems and in growing

superconducting or diamond films over homogeneous substrates [5].

The general problem of interest here is the heat diffusion and the fracture

mechanics problems in a medium that consists ot a nonhomogeneous layer bonded to a

homogeneous substrate and contains an interface crack. The primary objective is to

investigate the techniques which would lead to analytically tractable solutions of the

"(elated mixed boundary value problems and to provide some examples comparing the

results of various kinds of material nonhomogeneities. To do this we consider a problem

which is relatively simple to work with and yet has all the analytical features that need

to be investigated. The problem studied here is a two-dimensional diffusion problem for

a nonhomogeneous medium bonded to a rigid half space having a crack along the

interface. Even though the terminology used will be that of an elasticity problem for a

medium under antiplane shear loading, the results may be interpreted in terms of any

number of diffusion phenomena.

2. Formulatofn 1k Problem - A Direct Mckh1

Consider the antiplane shear pr6l1cm for a semi infinite nonhomogeneous elastic

medium shown in Fig. 1. It is assumed that the medium is bonded to a rigid half spacc
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along the y=O plane, the interface contains a crack on y=O, -a<x<a, and the medium is

subjected to arbitrary antiplane shear loading which may be mechanical or thermal in

origin. It is also assumed that the problem is solved under actual loading conditions in

the absence of a crack and through a proper superposition is reduced to a local

perturbation problem in which the crack surfac< tractions are the only non-zero external

loads. Furthermnrc., f we assume that the shear modulus P is a function of y only, the

non-vanishing stress components and the equilibrium equation may be expressed as

OV= P DI pow (2.1)

09 C9 _ 0 (2.2)

where w is the z component of the displacement vector. In the crack problem under

consideration (2.2) will have to be solved under the following mixed boundary

conditions:

(, (X, 0) = C (1) a -a< x< (

(z, 0) = 0, a < !xI < vc, (2.3)

0 (x) being the known crack surface traction.

Let the solution of (2.2) be given by

W f o F(yr,) e-iaZ du. (2.4)

From (2.2) and (2.4) it follows that

d&F+ p(Y) ý- _2F = 0 (2.5)

where

d I a .( Y,) (2.6)

If we replace the unknown function F by H so that
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Fýy -L = Hfc 'p _ (t) d]= H (y, a) (tL y) (2.7)

equation (2.5) becomes

H-(P2 dPH )d (2.8)4 p + 2 ýL --4,t 2 .H = O0. .)

\:e will now look for a particular class of functions /,(y) for which (2.8) has an

analytical solution. The simplest of such class of functions are obtained by assuming

that

1 dp 1 
(2dy 4 = C(2.9)

where c. is a constant. Three classes of functions satisfying (2.9) may thus be obtained

as follows:

ka) co = 32

p(y) = -7923 ,(y) = poexp ( -T23 y) (2.10)

p(y) = 23 coth (3y + 8) A /t (y) = p0 sih 2('3y + 8), (2.11)

p(y) = 23 tamrh(3y+ 4) , li(y) = /io cosh2(3y±+ 8); (2.12)

(b) c,= -3 2 :

p(y) = -23 tan,(yy+,6) , j (y)= c(y (2.13)Sco'(ý3y + 6)'

p(y) = 23 cot(3y + 5) , /(y) = /po sin2(,3y + 6); (2.14)

(c) c" = 0

p(y) = 0, fly) = AO (2.15)

23 (2.16)

P( ) = 3 , - =,
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where ,3, 6, and po are arbitrary constants (po > 0).

From (2.S) and (2.9) it is scen that

dH -A2H=0, A2=a2+coA\=(a2 c/ (2.17)

Formally, from (2.4), (2.11) and (2.17) we now obtain

WX. Y) = 2 ] / .A(ck) exp( - A y- iax) d, (2.1s)

where the constant po is introduced for dimensional considerations and the function .4 is
unknown to be determined from (2.3). The physics of the problem requires that w -+ 0
for y cc. Thus, from (2.17) ad (2.1S) it may be observed that A defined by

(a 2 + Co)1/ 2 must be positive for all values of ct and, therefore, the negative values of

c or shear moduli given by (2.13) and ý2.14) would not be acceptable for the solution
expressed by (2.1S). From (2.1) and (2.1") the stress cumponents are found to be

i(,a (. Y))-I ýIX
- -- i.4icU) exp( - Ay- iZx) da , (2.19)

"or= -\p P A_] (\iL a'.4(c) ezp(-Ay - iax) da. (2.20)

By substituting from (2.1S) and (2.20) into (2.3) one would obtain a pair of dual
integral equations to determine A(a). The problem may also be reduced to an integral
equation by defining

_ x. 0 Uý( O) = g(x) . (2.21)

From (2.3b), (2.1S) and (2.21) it may thus be seen that

O)1/2 ia.4 (a) - I a g(t) e&t dt. (2.22)

Substituting now from (2.20) and (2.22) into (2.3a) we obtain

lim I fa (t)dd- =t,(x,O)= ao(x), -a < < a.+0 20 _ (2.23)
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where

K(ya) z ( ia e (2.24)

To investigate and to separate a possible singular part of the kernel in (2.23), the
asymptotic behavior of the inner integral for Ia o c must be examined. From (2.17)

it is seen that A -. a for laj -- ,c. Thus, for ýaj -,o from (2.24) we obtain

- Ial e- ' (2.25)

By adding and subtracting K, in (2.23) and by observing that

/ 1 2 (t- z)j ,o a e! 2y -2' (t-z) da = (2.26)-t t- X) -Y2l

from (2.23) we obtain

-a [O)(t(t) dt -a < x < a, (2.27)

I f z( 2A+ p'(O)/(O) I ia '2ia, t =) I .a )e' (- x) dai (2.28)

where the kernel k((x,t) is bcunded in the closed interval - a < (x, t) _< a
From (2.3b) and (2.21) it follows that (2.27) must be solved under the following single-

valuedness condition:

Ia g(t) dt= . (2.29)

3. Method .f Embedding

Even though the direct method used in the previous section yields only a limited
choice for representing the shear modulus p(y), keeping in mind that the mixed
bounda--" value problems which are of practical interest tend to be generally local
perturbation problems. it myv not be difficult to approximate yt(y) with sufficient
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accuracy in the region of interest by using the representations (2.10), (2.11), (2.12) or

(2.16). To solve the problem one could also follow the technique developed by Varley

and Seymour [1-0] for transforming partial differential equations with variable

coefficients into equations with constait coefficients. The technique is more general in

scope but also is more complicated. Following [10] we first replace the equilibrium

equation (2.2) by
Dw f OW Of (3.1)

DOXy -x - "

Introducing the functions I-(x. y) and F(x, y) which satisfy

DIV _ OF 0 (3.2)
Dx-~ 2 - o '

we now express w and f in terms of IV(xy) , F(x,y) and a system of coefficient

falnctions 1", (y) and f, (y) as follows:

w(xy,) = >3 •'.• II-t %V ' () -y.% - f

N oN -
f (,-r 0 -f Y) (3.3a,b)

Substituting from 3.3) inito (3.1) and using (3.2) we obtain

O A' ( aT. W- - ( a l " ) O v)

N ON - n

ay (awl W),;-,, (w)aN (a o ON --- (ay IV aN (_, W, ..

.v o a- +.x 0 Wax
a •(fnAf-) a W) + uv. F (3.4a,b)
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An admissible set of functions. i. f and L, sat.sfying 3.4) may be otained from

fo= u0

a u,• ,, u,, 1 n = . ... . . .

.,- = 0 .

Frrcu, .3.. it ::a v c 1)c

= .- fN. = L.v. (3.6)

where K. and L\ are constant.

Equation y3.2', inciicates' iat '1 is a harmonic funtion which, for y > 0

- x < x < -n may be expressed as

A f .4(n) e- . (3.7)

F-orn 3.3) and 3.7) it follows that

-=-L .4(a) H(y.ot - • ' , do (3.8)

where

N
ITVc, W= Y ,,5) (- a )\ - (3.9)

If we again define g(t) by (2.21), from (2.3) and (3.9) we obtain
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-u+J(t) (nt / -(
v-.O + 12 -a -- c. ioH,0.a)

<)." , - < . < a (3.10)

By separating the singuilar kernel, `ron' 3. 0 and (3.9) it may be shown that

fm 1 a_~ ~ _~ ,it ':A
1 I • -a < x < a, (3.11)-0= ,--J 2- Ix

tw. 9 . - " U•, t - x) d. c +ia(t-z)

,, 3 .1 2 )

Bv takin4 t`he limit 3.11 c c,.,eS

1~~~~~ "< x < + ',..ti<: t.. a a (3.13)

*here the kernel .'is bounded in - a < <. ta and is ''bvb

V

-0

j,.l -, _ I _________ Oia (t-x) da

Zo Y 'v, .\" - o n.2 f ,IiA ' ,)O , Q

s i t (3.14)

Equation (3.13) is again subject to the condition (2.29).

As an example consider the case of N = 1. From (3.5) and (3.6) it may be seen

that

-9--



tv, = K 1 . f= L, (3.15)

df

where K, and L, are arbitrary constants. Thle solution of (3.16) may be obtained as

KAL1 > 0

- A L L1  1 (3.17

K1 L1 <0

J;, =L - "
A1  t~ \ U•J+•'

:iL, ( IT, L,' -)

S - 1  <oL (3.1)

1.KI -) -- L (3.19)

L1 =) " 1 (3.20)

From 13.6) observing that f0 = , /3.1T) - 3.20) now provides four different functional

'orms for v.'"ich the mixcu boundaryv ne problem under consideration would be

alxalv,:cd:v tractable. For example, . g L1 = - 3Li/ta7JiS, K, = - tanht/,-7fo

and I Yt = , from (3.17b) .. e find

f(11) = Ap(y) = 1 tanhit 3y-- tan;,; C, (3.21)

1 1 (3.22)c co th3y co o (322).Q." K) "Vic

Also. tLe Fredholm kernel given by 13.14) becoines
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k (x~t) = 2,3 [coth2 (6) - 1] JOs in at - ) d.(3.23)
0 + a coth(b) doe .

It is clear that solutions for ti(y) with grcatcr number of arbitrary constants may

be obtained from (3.5) by considering cases for which V > 1 [10]. Technically the

greater number of arbitrary constants would provide a better representation of the given

shear modulus.

4. Examples

We first consider the application of the method described in Section 2 and give two

examples where we assume that cu > 0 or co = 0 (see equations (2.9) - (2.16)). Thus,

we let the shear modulus have the form

Ia)j I'(Y) = •0  t. 2 2 . y > 0, (4.1)

b) u(y) =I(3•+ •/ , y > 0 (4.2)

where .3 may be positivc or negative. For the two cases (4.1) and (4.2) the Fredholm

kernel expressed by (2.2S) becomes

-=3 t - Z i , ,n : c( t - d
k,, t) d (4.3)2 t -x(( IiCJ2 <c -. 32)

s_____1 ___ .3 t - x
k, ti a da = -,) - (4.4)f 0 -Z2 t- X

From (2.27) and (2.28) it may be observed that the dominant part of the integral

equation has only a Cauchy singularity. Consequently the solution of (2.27) has the

form '11l

(t) G _ -a < t < a, (4.5)

where G is unknown which is l)oun(led in - a < t < a and non-zero at t = : a.

The integral equation (2.2_) is solved numerically by normalizing the interval
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and by observing that its fundamental function is the weight of Chebyshev polynomials

T,(s). Thus, defining

11(sl hs) Ga(, ) (4.6)
t = as x = ar, g(t) = o(s) = - 7- ) = a (46

The unknown function h(s) may be expressed as

h(3) -z 1) .4, r2 _l 1(s5) (4. 7)
)0

where .40, A, ... arc unknown constants and only the symmetric loading is considered,

that is, a. (X)= d( -X) and tw(x,y)= c( -xy). By using the following properties of

Chebyshev polynomials

0. n=0. -i<r<1,

1/ T• f(s) ds = ,_ U,,.. :(=r,2,., - I < < 1,"_ - ( s - r ) ,; 1 - s 2 "
7- 1 ,L r ' -1] n = 0,1, 1 . ., l• > 1

and by substituting from (4.6) and (4.7) into (2.27) we obtain

-4 .-tUl2 n 0(r) + M2, n(r)] = coT(ar) - I < r <1, (4.9)
0

kb b(ar, as)f 7 s

Also, by using the orthogonality conditions of T, (s) from (2.29), (4.6) and (4.7) it

follows that

Ao = 0. (4.11)

The simplest way of solving the functional equation (4.9) without sacrificing

accuracy appears to be truncating the series at n = N and using an appropriate
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collocation technique. In this case because of the nature of the problem it is necessary

to increase the density of the collocation points near the singular points r = F 1. Thus,

these points may be selected as follows:

T. (r,) =0 , = cos (2i- 1), i= 1, ... N . (4.12)

The linear algebraic equations obtained from (4.9) by substituting r= ri, i= 1, . . . , N

would then give the unknown coefficients .41 . .... 4V.

One may note that in case (b) the kernel kb is known in closed form and by using

(4.4) and (4.10) the functional equation (4.9) may further be simplified as follows:

A, U2.- (r)+ A s ir(2 n -1)0 =o(r), -1< r< , 1 (4.13)
1 n

where 3a
A r = coso. (4.14)

Even though the collocation technique mentioned above can also be used to solve (4.13),

in this case perhaps a more appropriate technique would be to use a weighted residual

method and reduce (4.13) to an infinite algebraic system. Thus, if we select the weight

functions U2,, (r) '-- and use the orthogonality conditions; I {0, -4
1 { ~(7-) U, (r) ý1 - 7 ir={ (.15)

(4.13) may be reduced to

A,=s Z c, .- +d,_ , i= 1,2 (4.16)

where

di 2 f 0, (r) U,, (7') 1- 2 d" i= 0,1,2, . . . , (4.17)

2 (21-2)-(2-1) -2) (2' (.1
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The infinite system (4.16) can be solved by reduction and convergence is assured
provided the system is regular '121. The condition for regularity is

Z 1cj,8  <1, i=1.2. . . . (4.19)

Performing the infinite sum, (4.19) may be expressed as

2 4 3)(i-1) 2- 1 1)(4.20)(4z'- 3)(41i- 1) j (2i -2)' - 2 j- 1)' (2i) - (2j- 1 <)

In (4.20) the brackcted quantity is greatest for i = 1. Hence the condition of regularity

becomes

.3< o r A < 37--.21

16 6 16

For A > 3</16 the system is quasi-regular ii the sense that there exist an i for which the

infinite system beginning with the (i + 1) st equation is regular.'

In the problem under consideration the physically important quantities are the

crack opening displacement w(.zx.0) and the shear stress o•.(x,O) along the interface,

particularly the stress intensity factor. From (2.21), (4.6) and (4.7) w(x,O) may easily

be obtained as follows:

w.(X.0) = 9(t) dt- 1 L .4,, L 2T,,- (-•)• a-•, I z <a . (4.22)-a 140) 0

Referring to (2.23) and (2.27) it may be observed that the left hand side of the integral

equation represents ory=(x,0) for lxi > a as well as for lxi < a. Thus, by substituting

from (4.6) - (4.S) into (2.27), for x = ar and ir I > 1 we obtain

'There seems to be a curious analogy between the antiplane shear problem for a half plane

with the shear modulus given by (4.2) and the cover plate problem described in [13]. In [13] the cover

plate was approximated by a membrane of thickness h and elastic constants pi and tc , and wvas the

stiffness parameter defined by A = p2 (1 + Kl)/[2ph (1 + n2)] where p2 and r2 are the elastic

constants of the substrate. In the two problems the analogous physical quantities are the interface

shear stress a_,y (in [13]) and p (0) o (s) (see V2.2I) and (4.6).
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SI -rl- "

C "n- 1

0 - s -i/ - __

" =, _ . . I:: •.' s 4.23)

If we now define the mode III st:css - ::':t m.:or 3 at the crack tip r-abv

(4.24)

-:om t4.23, " -.ay e "sz .!...

A'3 = -. 4,, (4.25)

As a third example .v'e conside" one of the expressions found for jq(y) in Section 3,

namely

coth2 i 3=1 - 2 " = , .6 > 0 .0 < 3 < .)c (4.26)

The problem Is solved Ibv simpli- :icpaci:na the hernels k, or kb given (4.3) or (4.4) by k,

found in Section 3 and by following the pocedcune outlined in this section.

5. ResWa A" Discu•on

Based on simple physical consideration:s ;, may be observed that the solution given

in this study for a nonhomo•eneous l:aaf plane having a shear modulus jq(y) , y>O, is

valid also for the corresp•,,di:• na:e di.,lum in which y = 0 is a plane of material

symmetry, that is. ,i( - y) = j(y), - --. < y < -c. Thus, in the examples considered if we

let the material nonhomogeneý:y parameter 3 be zero in (4.1), (4.2) and (4.26), i

becomes a constant ji,0) and the proble-n reduces to that of a homogeneous plane

having a crack which is subjected to s..mmetric crack surface tractions. In fact from
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(2.17), (2.27) and (2.28) it may be seen that for 3 = 0 we have A =c I and p'(0) = 0

giving k(r,t) = 0. For example, if cr(x) = - p, from (4.6) - (4.11) and (4.23) it follows

that,

'12. -1= O0,.--1= A -p .4,=O, ,T> ! , 9(X)= 2zP ,a'- 2 x Iz < a._ X

%:(z,O) =p P"K ' 2-i 1. ,]:= ThJN. (5.1)

Similarly, observing thiat -={' , Ur') + U(r)}/4 , for a parabolic traction

7o(x)= -p.,(' •a j2 it may easily be seen that A= A2 =P2 /4 and

P2 / 4 • -2 1/ A)2. 1 3OY( .O) 2- 2 -'•X U Gý-- a- • -1 ,x> . (,5.2)

giving 1= p2Na/2 (see Table 1). Also. in the third example considered in Section 3,

from (3.23) it is seen that for 3=0 =,2x.t)=0 and (3.13) reduces to an integral

equation for a homogeneous :a:e:inl haing the shear modulus JL(0).

For a plane with various forms of nonihomogeneities considered in Sections 2 and

3 the calculated stress intensiyv factors are given in Tables 2 and 3. In these results Pa

and p, again refer to the loading parameters defined in Table 1. In a limited way the

results for uniform loading are alo displayed in Figures 2-4. The materials considered

in these three examples exhibit some distmict features. The hyperbolic functions used in

Table 2 and Fig. 2 to rcpresen- -.e shear modulus have constant asymptotic values for

,y--c, namely /iotanh.2S and /to/cot]', where /J = /1(0) (see the insert in Fig. 2). In the

parabolic distribution for ji(y) assumed in Fig. 3 and Table 3, for 3 < 0 11 becomes zero

at y = 61/3 and hence the results correspond to a nonhomogeneous layer of finite

thickness with vanishingly decreasing shear modulus away from the interface. For this

reason in this example the stress intensity factors corresponding to - <0 are

considerably greater than that of the other examples shown in Figures 2 and 4 and

Tables 2 and 3 in which ;1(y) is also a monotonically decreasing function.

Let us now examine the asymptotic behavior of the stress intensity factor k3 as

3-+ = x. First, from (4.6). (4.7 and (4.25) it can be seen that k3(a) may also be

expressed in the following alternate form:

-16-



k3 a i ( ) ý ( ) g x (5 .3 )

In the examples given in Table 3 and Figures 3 and 4, it may now be seen that as

3-* + c the stiffness of the medium would increase indefinitely and, under loadings of

finite magnitude, the crack opening displacement or g(x), and consequently, k3(a) would

tend to zero. these physically expected trends may be observed in Figures 3 and 4 and

in Table 3. Similarly in the example given in Table 3 and Fig.4 for p(y) = p0exp(23y),

the stiffness of the medium would decrease indefinitely as .3 -- C, and consequently

k3(a) would tend to infiniv. Also, for 3 < 0 and ,L(y)/tpo = ( 3 y + 6)2/62 the "thickness"

of the medium Yo = - 6,'3 and as a result its stiffness would decrease indefinitely as

.3-+ - x, again causing k3 a) to approach infinity.

The examples considered in Table 2 and Fig. 2 are quite different and somewhat

more prac:ical than the exan-l)les shown in Table 3 in that for Q-+oo the medium

becomes homegeneous with a shcar modulus ,u(O)/cothO6 or (O)/tanh 26. Thus, in the

limiting case of 3 = .c the -tre.s :ntensirv factor ought to be independent of the shear

modulus and should have the values given in Table 1. This trend, of course, is not

observed in Table 2 and Fig. 2. The explanation of the discrepancy may be found in

the fact that, becouse of the discontinuous change taking place in JL(O) at oo = o, the

only physical quantity that should be expected to vary continuously as 0-+00 is the

strain energy release rate which may be defined by and expressed as

-i" £ = da (a)
dE= d , Ua (.,0)tcrx-da.0)dx, g 3 4((0)

where E0 is the externally added or internaly released energy that is available for

fracture. Physically the problemn may be visualized as a crack problem for a

homogeneous half plane bounded to a rigid substrate through a thin nonhomogeneous

layer. The objective is to determine the asymptotic behavior of the solution as the layer

thickness approaches zero.

To gain a better insight to the problem we consider the simpler example of

piecewise homogeneous medium shown in Fig. 5. The modeIll crack problem described

by Fig. 5 is that of two idendical homogeneous half spaces having the shear modulus p 2

which are bonded through a homogeneous layer of shear modulus Mz and thickness 2h.

The layer contains a crack of length 2a in the plane of the symmetry. Following a
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technique described in section 2. the mixed boundary value problem may easily be

reduced to the following singular integral equation [14]:

1 - i" k,(x, t) g(t) dt - < x < a

i" -- P - , (x, t) = 20 s C -- inQ(t - x)da (5.Sa,b)

First, we simply note that for h = o the problem becomes one of a cracked

homogeneous plane with shear modulus #L, for which the solution is given by (5.1) and

(5.2) and Table 1, specifically

ao(x) = -p: PuoUa -0 44,u

o0 2'x -- 91 0.25, y1 , (5.6a,b)

Referring to (5.4) we note that the strain energy release rate g calculated in this article

and given in various figures and tables and in equations (5.4), (5.6) and elswhere

correspond to one quarter of the total enwrgy released in a cracked medium such as that

shown in Fig.5. In the other limiting case of h-+O it may easily be shown that

k x ,t) + ,• _tl - (5.7)

and (5.5a) becomes

1 p (t)dt •x <(a (5.8)

"t - - x 112

which is the integral equation for a homogeneous medium having the shear modulus /2.

Thus, from (5.S) it follows that

9(a) (ý,a ita
O0(x) = - P: - 1 = 2 go,

g(a,) ý =ipga -

Po()) = a p3 = 0.25, 42 = = (5.9a,b)
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Referring now to Fig.5, we observe that as long as h > 0, the stress intensity

factor and the strain energy release rate are defined by

k3(a) = -,na .i(0) ,2(a - x) g(i;), 9(a) - , (5.10)X- a 4p,

where g(x) is obtained from (5.5a). For the loading conditions given in Table 1 and for

111/1.2 = 2 and a,1/u2 = 0.5 these calculated results are given in Table 4 and are also

partially shown in Fig.6. The limiting values of g(a) for h--x and h--0 and k3(a) for

h--*ý) are clear and unambiguouls and are given by (5.6) and (5.9), respectively. From

(5.10) (5.9) and (.3.6) it is also seen - tat for /, = +0

70;(aC) 7_ _____

ij(a) a-- _ _ i •
4p - 0.2.5 = g3  = 0. 2 -,' , 3(c) -(5. ab)4/ll 4p,--7, ,I ( ) = • • -•p2Na. ( . n b

Table 4 and Fig.6 show that these are indeed the limiting values of the results obtained

from (5.5a) and (5.10).

Considering the fact that for !-*0 the problem reduces to that of a homogeneous

plane, the limiting value of 1:3 still appears to be somewhat paradoxical. The

explanation of the apparent discntinuity in k3 at It = +0 lies in the fact that for very

small h, " obtained from the integral equation (5.5a) and shown in Table 4 is the

measure of near field quantities. Far field quantities should ,of course, be that of the

homogeneous infinite medium. Without a lengthy singular perturbation analysis this

can be shown by examining, for example. the crack opening displacement w(x,0) very

near the crack tip as It approaches zero. The results calculated from (5.5a), (4.5) and

(4.22) are shown in Figures 7 and S. Figures 7a and Sa show w(x,O) and G(x) for various

values of p/it 2 and h/a. From Fig. 7a it is seen that away from the crack tip as h-+0

w(x, 0) converges to the corresponding homogeneous infinite plane values (indicated by

h = 0). Fig. 7b shows a magnified version of w(x,O) near the crack tip for P2/1Ll = 2.

Note that w - Po/l. The curves marked by (h/a = 0, 112/11 = 2) and by yj = y2 are

simple ellipses. As expected, away from the crack tip the curves marked by small

nonzero valucs of h/a are seen to converge to h/a = 0 ellipse. However, near the crack

tip the behavior of these curves is quite different and as h-+0 they seem to have a
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different slope than that of the correspouding ellipse. These may be seen somewhat

better in Fig. S showing G(x), G(a) being the measure of k3(a) (see Eq. (4.5)). From

(5.10a) note that for h = 0, that is. for the homogeneous plane P = P2,

k-3 =- 2G(a)!'-a, whereas for h >0 k3 = -p1 G(a)/N-a. Hence. the straight line

corresponding to h = 0 gives

1 Pox - Po0r k3(,) = p",--. (5.i2)G(7) = - - 12 )

The values of G(a) for inonizcro values of I shown in the figure give the stress intensity

factors listed in Table 4. The figure s+ow: that at h = + 0 G(x) would have a spike the

value of which seems to approach the independeitly calculated value of g1 //I2 . The

distribution of G(x) also shows the expected -'pinching" of the crack opening

displacement very near the crack tip, as cxhliibited by two inflexion points.

Figures 9 and 10 give som,,e sample results showing the influence of the material

nonhomogeneity parameter 3 on the crack opening displacement w(x,O), -- a<x<a. As

3 increases, in both examples the material stiffness also increases. Consequently, in

both cases the crack opening di'p•lacemet is seen to decrease for increasing values of ,3.

Based on the results civeni in Tac!-, 2 and 3 one may conclude that in fracture

mechanics analysis invoivi:ng nonhomogeneous materials the "crack driving force" (as

measured by the stress intensity factors or the strain energy release rate) may differ

quite considerably from the values gin-c by the corresponding homogeneous materials.

One may also note that in diffusion problems the square-root nature of the flux

singularity at the crack tip is not influenced by the material nonhomogeneity.
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Table 1. Loading conditions used and the corresponding

stress intensity factors for a3=0.

qco(x) -PO -p(x/a)2

k3(a) Po'-a 4pa

Table 2. The variation of stress intensity factors for various

loading conditions shown in Table 1., 6 = 1.

coth2(3y + 6) tanh2 (3y + 6)
= coth2 (6) /(Y)/ho = tanh-(6)

k3k 3  k3 k3

p.-- p2N-a po'-a P2q-;

0.0 1.00 0.5 1.00 0.5

0.1 1.02S 0.50S 0.972 0.492

0.2 1.049 0.514 0.951 0.486

0.4 1.051 0.524 0.922 0.476

0.5 1.093 0.528 0.911 0.473

1 0.6 1.104 0.524 0.901 0.469

0.7 1.114 0.534 0.893 0.466

0.S 1.123 0.538 0.886 0.464

0.9 1.131 0.541 0.819 0.462

1.0 1.138 0.543 0.S74 0.459

1.5 1.167 0.554 0.853 0.450

2.0 1.187 0.562 0.839 0.444

2.5 1.202 0.569 0.S28 0.439

3.0 1.214 0.575 0.321 0.434

4.0 1.231 0.584 0.310 0.42S

10.0 1.276 0.611 0.7S3 0.408

1.313 0.657 0.762 0.3S1
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Table 3. The variation of stress intensity factors for various

loading conditions shown in Table 1., 6 = 1.

(y//o=- (3+) 2 io=23y

k33  k3 k3
3a po.• P2ý'a po',a PI•--

-1.0 53.48 1.362 1.431 0.636

-0.S i2.397 0.-S94 1.397 0.612
-0.6 1.75 0.69S 1.30S 0.5S7
-0.4 1.3S4 0.601 1.214 0.560
-0.2 1.153 0.542 1.113 0.532

-0.1 1.069 0.519 1.0.59 0-.516

0.0 1.00 0.5 1.00 0.5

0.1 0.941 0.453 0.933 0.4S2

0.2 0.S90 0.469 0.SG9 0.463

0.3 0.346 0.456 0.$10 0.447

0.4 US0.7 0.444 0.735 0.431

0.3 0.773 0.434 0.712 0.41S

0.6 0.742 0.424 0,671 0.405

0.S 0.691 0.407 0.604 0.384

1.0 0.647 0.392 0.530 0.366

1.5 0.565 0.362 0.457 0.331

2.0 0.507 0.340 0.397 0.305

2.5 0.463 0.322 0.356 0.2S5

3.0 0.429 0.306 0.324 0.268
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Table 4. The stress intensity factors and the strain energy

release rates in two homogeneous 'f planes bonded

through a homogeneous layer containing a crack (Fig. 5).

•1i1/11 = '2 JL/P2 = 1/2

k,3 k3 k t3 k"3

I 0N P2Na

1.) 1.4142 0.7071 2.0 0.5 0.7071 0.3536 0.5 0.12.5

. 15 1.356 0.GS1 1.920 0.464 0.716 0.364 0.313 0.133

ii 1 3_ 13 5 0.674 1.91S 0.4,54 0.719 0.369 0.517 0.137

0.12 7 37S 0 .61 1.904 0.437 0.725 0.37S 0.526 0.143

0.04 1. 3 54 0.636 1..33 0.40.5 0.737 0.392 0.544 0.1.54

0.0S 1.313 0.606 1.723 0.367 0.75S 0.412 0.575 0.169

0.1 1.29.5 0.596 1.677 0.3.55 0.767 0.419 0.5S9 0.17.5

0.2 1.225 0,364 1.507 0.31 .O.SO5 0.442 0.64S 0.196

.4 1. 146 0.537 1.317 0.2SS 0.S59 0.464 0.739 0.215

()., 1.099 0.524 1.210 0.275 0.S97 0.475 O.SO5 0.225

)-1 0.517 1.14.S 0.263 0.923 0.451 0.S52 0.232

1.6 5053 0.513 1.10S 0.263 0.942 0.4S6 0.SS7 0.236

..0 0.3 1.0 0.25 1.0 0.5 1.0 0.25
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-a a x

Fig.1. The geometry of the problem
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1.5

0.5 1. 1.5 9/.0

1.2

0.8 A

0.4
0 Oa 1 11,3a 0

Fig.2. Stress intensity factor and Strain energy release rate for

a nonhomogeneous half plane under uniform antiplane shear

loading, u,.(x,O) = - po, go =pa/4o,

A: m(y) = potanMh(Oy + 6)/tanh2 6,

B: u(y) = pocoth2(Iy + 8)/cothA6, 6 = 1.
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3 1 1- I/

1 1 -

20 a=-1/3

1 2kL 3> 0 i 2 3
• i" /L (Y)//MIo•

S1

0
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Fig.3 Stress intensity factor for a nonhomogeneous half plane

subjected to uniform crack surface traction

oyz(z,O) = - Po, shear modulus 4(y)/po0 = (Oy + 6)'/62, 6 = 1.
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1.5-• ' ' '

1.0

0.5

0 .0 I I , I I , I ,

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
aft

Fig.4 Stress intensity factor for a nonhomogeneous half plane

subjected to uniform crack surface traction rryz(z) = P0,

()/0= e2

-27-



•2!

Fig. 5 The symmetric modem crack problem for two

homogeneous half spaces bonded through a homogeneous elastic

laver.

-2S-



2.0 *

1.5 -0g/

1.0 --- Po~ .-. -. -.-. -.. .

1 2.0
0.5I , I

0.0 0.2 0.4 0.6 0.8 1.0

h/a

Fig. 6 Stress intensity factor and strain energy release rate

as a function of layer thickness to crack length ratio

S= xipoa/4p1 ,
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2.0 a0.

1.50

0.50

WO h/a

0.3001

0.25

020=

0.100
0.00

00 0.90.4 X/ 0.95 0. 1.00

Fig.7b. Crack surface displacement in a layer bonded to a

semi-infinite homogeneous plane under uniform crack

surface shear loading oyz(x,o) PO ,WO =~

0-30-



0.6 h/a=0.02
0.01

0.005

G(x) 0. 40.

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Fig.Sa. G(z) vs x/a I 112/1Il= 2.0 ,Go= - poaly, .

0.8

0.7 h/a=0.02

0.01

G (x) 0. 60.5
Go0.

0.

0.90 0.95 1.00

z/a

Fig.8b. G(x) vs x/a 1112/P1 = 2.0, Go poa/lil.
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1.2 * I

1.0

•0.8

00.6

S0.4 1

2
0.2

0.0 I * I I
-1.0 -0.5 0.0 0.5 1.0

X/a

Fic ) Crack surface displacement in a semi-infinite

nonhomogeneous plane under uniform crack surface shear

loading 0y,(x,O) = - po; = tah 2(fly + 6)/tanh2 (6),

b = 1,wo = apo/po.
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1.5

1.0

0.01

-1.0 -0.5 0.0 0.5 1.0
x/a

Fig.10 Crack surface displacement in a semi-infinite

nonhomogeneous plane under uniform crack surface shear

loading ayz(x,O) = - po; ,(y)lyo = Jo = apo/po.
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